AAEC 6305 - Optimization and Machine Learning

Don Lim

Texas Tech University

November 17, 2021

Table of contents

- 1. Introduction
- 2. First stage
- 3. Second stage
- 4. Mixed-integer programming
- 5. Case study: Seattle and Cascadia fault lines
- 6. Concluding remarks

Introduction

The paper

Stochastic optimization of medical supply location and distribution in disaster management (Meta & Zabinsky, 2010)

- ▶ Logistics of humanitarian aid during disasters
- ► Stage one: minimize cost of warehouse operation and expected second stage solution with respect to disaster scenarios
- ► Stage two: minimize total transportation duration and penalty of unfulfilled demand
- ► Mixed-integer programming (transportation plan): minimize total transportation time of assigned vehicles

Map of Seattle

Overview

- ightharpoonup I represents the set of warehouses
- ightharpoonup K represents the set of types of medical supplies
- ▶ s_{ik} represents the decision variable for the inventory level of medical supply k in warehouse i for all $i \in I$ and $k \in K$
- $ightharpoonup x_i$ represents a binary variable
 - \triangleright 1 if the warehouse *i* is selected to be operating
 - ightharpoonup 0 otherwise; for each warehouse $i \in I$
- \triangleright g_i represents the warehouse operating costs
- \triangleright e_k represents the maximum amount available of each medical supply type
- ▶ l_{ik} represents the storage capacity of each warehouse for each medical supply type for all $i \in I$ and $k \in K$

- ightharpoonup I represents the set of warehouses
- \triangleright K represents the set of types of medical supplies
- ▶ s_{ik} represents the decision variable for the inventory level of medical supply k in warehouse i for all $i \in I$ and $k \in K$
- $ightharpoonup x_i$ represents a binary variable
 - \triangleright 1 if the warehouse *i* is selected to be operating
 - ightharpoonup 0 otherwise; for each warehouse $i \in I$
- \triangleright g_i represents the warehouse operating costs
- \triangleright e_k represents the maximum amount available of each medical supply type
- ▶ l_{ik} represents the storage capacity of each warehouse for each medical supply type for all $i \in I$ and $k \in K$

- ightharpoonup I represents the set of warehouses
- \blacktriangleright K represents the set of types of medical supplies
- ▶ s_{ik} represents the decision variable for the inventory level of medical supply k in warehouse i for all $i \in I$ and $k \in K$
- $ightharpoonup x_i$ represents a binary variable
 - ightharpoonup 1 if the warehouse *i* is selected to be operating
 - ▶ 0 otherwise; for each warehouse $i \in I$
- $ightharpoonup g_i$ represents the warehouse operating costs
- $ightharpoonup e_k$ represents the maximum amount available of each medical supply type
- ▶ l_{ik} represents the storage capacity of each warehouse for each medical supply type for all $i \in I$ and $k \in K$

Stage one model

Warehouse selection and inventory decisions

$$\min_{s} \sum_{i \in I} g_i x_i + E_{\Xi}[Q(x, s, \xi)] \tag{1}$$

subject to

$$\sum_{i \in I} s_{ik} \le e_k; \forall \ k \in K \tag{2}$$

$$s_{ik} \le l_{ik} x_i; \forall \ i \in I, k \in K \tag{3}$$

$$x_i \in \{0, 1\}, s_{ik} \ge 0; \forall i \in I, k \in K$$
 (4)

- ► J represents the set of hospitals in addition to those used in the first stage
- $ightharpoonup t_{ijk}(\xi)$ represents the recourse decision variable, which is the amount of medical supply k to be delivered from warehouse i to hopsital j under disaster scenario ξ
- $c_{ij}(\xi)$ represents the transportation time between warehouse i to hospital j
- $\mathbf{w}_{jk}(\xi)$ represents unfulfilled demand at hospital j of medical supply type k under scenario ξ
- $ightharpoonup y_{jk}(\xi)$ represents the amount of unfulfilled demand
- $ightharpoonup d_{jk}(\xi)$ represents the demand of medical supply type k at hospital j under scenario ξ
- au_{jk} represents the upper limit for penalty of unsatisfied demands for each hospital j and medical supply type k

- ▶ J represents the set of hospitals in addition to those used in the first stage
- ▶ $t_{ijk}(\xi)$ represents the recourse decision variable, which is the amount of medical supply k to be delivered from warehouse i to hopsital j under disaster scenario ξ
- $ightharpoonup c_{ij}(\xi)$ represents the transportation time between warehouse i to hospital j
- $\mathbf{w}_{jk}(\xi)$ represents unfulfilled demand at hospital j of medical supply type k under scenario ξ
- $\triangleright y_{jk}(\xi)$ represents the amount of unfulfilled demand
- $b d_{jk}(\xi)$ represents the demand of medical supply type k at hospital j under scenario ξ
- au_{jk} represents the upper limit for penalty of unsatisfied demands for each hospital j and medical supply type k

- ▶ J represents the set of hospitals in addition to those used in the first stage
- ▶ $t_{ijk}(\xi)$ represents the recourse decision variable, which is the amount of medical supply k to be delivered from warehouse i to hopsital j under disaster scenario ξ
- $ightharpoonup c_{ij}(\xi)$ represents the transportation time between warehouse i to hospital j
- $\blacktriangleright w_{jk}(\xi)$ represents unfulfilled demand at hospital j of medical supply type k under scenario ξ
- $y_{jk}(\xi)$ represents the amount of unfulfilled demand
- $d_{jk}(\xi)$ represents the demand of medical supply type k at hospital j under scenario ξ
- au_{jk} represents the upper limit for penalty of unsatisfied demands for each hospital j and medical supply type k

- ▶ J represents the set of hospitals in addition to those used in the first stage
- ▶ $t_{ijk}(\xi)$ represents the recourse decision variable, which is the amount of medical supply k to be delivered from warehouse i to hopsital j under disaster scenario ξ
- $ightharpoonup c_{ij}(\xi)$ represents the transportation time between warehouse i to hospital j
- $\mathbf{w}_{jk}(\xi)$ represents unfulfilled demand at hospital j of medical supply type k under scenario ξ
- $\triangleright y_{jk}(\xi)$ represents the amount of unfulfilled demand
- $b d_{jk}(\xi)$ represents the demand of medical supply type k at hospital j under scenario ξ
- au_{jk} represents the upper limit for penalty of unsatisfied demands for each hospital j and medical supply type k

Stage two model

Transportation plans and demand satisfaction decisions

$$Q(x, s, \xi) = \min \sum_{i \in I} \sum_{j \in J} \left(c_{ij}(\xi) \sum_{k \in K} t_{ijk}(\xi) \right) + \sum_{j \in J} \sum_{k \in K} w_{jk}(\xi) y_{jk}(\xi)$$
(5)

subject to

$$\sum_{j} t_{ijk}(\xi) \le s_{ik}; \forall \ i \in I, k \in K$$
 (6)

$$\sum_{i} t_{ijk}(\xi) = d_{jk}(\xi) - y_{jk}(\xi); \forall j \in J, k \in K$$
 (7)

$$w_{jk}(\xi)y_{jk}(\xi) \le \tau_{jk}; \forall \ j \in J, k \in K$$
 (8)

$$t_{ijk}(\xi), y_{jk}(\xi) \ge 0; \forall i \in I, j \in J, k \in K$$

$$(9)$$

Transportation plan

Mixed-integer programming (MIP) model explanation

- ► Subproblem of stage two
- \blacktriangleright Dispatches vehicles from warehouses to hospitals under each scenario ξ
- ▶ Uses predetermined routes at the expense of preprocessing effort
- ► There are already daily transportation plans from warehouses to hospitals
- ► Expands alternative routes to avoid bridges and highways that are vulnerable to certain disasters (i.e. earthquakes)
- ➤ *Route* is defined as an ordered list of subset hospitals from an initial warehouse

Transportation overview

- ightharpoonup V represents the set of available vehicles
- ightharpoonup R represents the set of possible routes
- $ightharpoonup z_{vr}$ represents a binary variable
- $ightharpoonup m_{ijkvr}$ represents the decision variable of the transportation amount of k-type medical supply along route r by vehicle v from warehouse i to hospital j
- $ightharpoonup q_r$ represents the travel time along route r
 - Note: q_r is not the sum of $c_{ij}(\xi)$ because the route r may include several hospitals whereas $c_{ij}(\xi)$ includes exactly one hospital
- ightharpoonup l represents a set of disjoint supply types
 - l=1 for types that require refrigeration
 - ightharpoonup l=2 for ones that do not
- h_{vl} represents the carrying capacity of vehicle v with the classification of refrigeration l

- ightharpoonup V represents the set of available vehicles
- ightharpoonup R represents the set of possible routes
- $ightharpoonup z_{vr}$ represents a binary variable
- ▶ m_{ijkvr} represents the decision variable of the transportation amount of k-type medical supply along route r by vehicle v from warehouse i to hospital j
- $ightharpoonup q_r$ represents the travel time along route r
 - Note: q_r is not the sum of $c_{ij}(\xi)$ because the route r may include several hospitals whereas $c_{ij}(\xi)$ includes exactly one hospital
- ightharpoonup l represents a set of disjoint supply types
 - l=1 for types that require refrigeration
 - ightharpoonup l=2 for ones that do not
- \blacktriangleright h_{vl} represents the carrying capacity of vehicle v with the classification of refrigeration l

- ightharpoonup V represents the set of available vehicles
- ightharpoonup R represents the set of possible routes
- $ightharpoonup z_{vr}$ represents a binary variable
- ▶ m_{ijkvr} represents the decision variable of the transportation amount of k-type medical supply along route r by vehicle v from warehouse i to hospital j
- $ightharpoonup q_r$ represents the travel time along route r
 - Note: q_r is not the sum of $c_{ij}(\xi)$ because the route r may include several hospitals whereas $c_{ij}(\xi)$ includes exactly one hospital
- ightharpoonup l represents a set of disjoint supply types
 - l=1 for types that require refrigeration
 - ightharpoonup l = 2 for ones that do not
- \blacktriangleright h_{vl} represents the carrying capacity of vehicle v with the classification of refrigeration l

- ightharpoonup V represents the set of available vehicles
- ightharpoonup R represents the set of possible routes
- $ightharpoonup z_{vr}$ represents a binary variable
- $ightharpoonup m_{ijkvr}$ represents the decision variable of the transportation amount of k-type medical supply along route r by vehicle v from warehouse i to hospital j
- $ightharpoonup q_r$ represents the travel time along route r
 - Note: q_r is not the sum of $c_{ij}(\xi)$ because the route r may include several hospitals whereas $c_{ij}(\xi)$ includes exactly one hospital
- ightharpoonup l represents a set of disjoint supply types
 - ightharpoonup l = 1 for types that require refrigeration
 - ightharpoonup l = 2 for ones that do not
- \blacktriangleright h_{vl} represents the carrying capacity of vehicle v with the classification of refrigeration l

MIP model

Transportation plans

$$\min_{m} \sum_{r \in R} q_r \left(\sum_{v \in V} z_{vr} \right) \tag{10}$$

subject to

$$\sum_{i \in I} \sum_{j \in J} \sum_{k \in K_l} m_{ijkvr} \le h_{vl} z_{vr}; \forall \ v \in V, r \in R, i \in \{1, 2\}$$
 (11)

$$\sum_{v \in V} \sum_{r \in R} m_{ijkvr} = t_{ijk}(\xi); \forall i \in I, j \in J, k \in K \quad (12)$$

$$\sum_{r \in R} z_{vr} \le 1; \forall \ v \in V \quad (13)$$

$$m_{ijkvr} \le 0; \forall i \in I, j \in J, k \in K, v \in V, r \notin R_{ij}$$
 (14)

$$z_{vr} \in \{0, 1\}, m_{ijkvr} \ge 0; \forall i \in I, j \in J, k \in K, v \in V, r \in R$$
 (15)

Case study: potential earthquakes in Seattle

Earthquakes

- ► Seattle fault (6.7 magnitude)
 - ► Assumption: damage southern part of the city and I-5
 - ▶ Probability: 0.4
- ► Cascadia fault (9.0 magnitude)
 - Assumption: damage north part of the city and smaller bridges
 - ▶ Probability: 0.6

Time of day

- ► Working hours (W)
- ▶ Rush hours (R)
- ► Nonworking hours (N)
- ► Mon-Sat: 8 W, 5 R, 11 N; Sun: All N

Tables

T		1 * . *	C	
Prol	ha hi	lities	\cap t	scenarios
1 10	oabi	110100	$\mathbf{O}_{\mathbf{I}}$	SCCITATIOS

Scenario	Seattle fault			Cascadia fault				
	W	R	N	W	R	N		
Probability	0.11	0.07	0.22	0.17	0.11	0.32		

Warehouse capacities and operating costs

Warehouse	Capacity (\$10 ³ units)	Cost $(\$10^6)$	Cost/capacity $(\$10^3/\text{unit})$
1	20	25	1.25
2	25	20	0.80
3	30	12	0.40
4	10	6	0.60
5	5	12	2.40

Transportation table

arehouse	Hospital	Seattle fault			Cascadia faul	t		Table 5 (continues	d)						
		w	R	N	w	R	N	Warehouse	Hospita	ıl	Seattle fault			Cascadia fa	ault
	1	77	210	44	44	90	1				w	R	N	w	R
	3	105 27	210 27	60 18	60 18	90 18	1:	5	2		56	56	28	84	
	4	15	15	10	10	10		5	3		154	154	88	88	
	5	105 112	210	60 64	60 64	90	1:	5	4		66	66	44	44	
	7	147	245	84	84	105	2	5	5		108 96	81 72	27 24	189	1
	8	18	18	12	12	12		5	7		48	36	12	84	
	9	24 18	24 18	16 12	16 12	16 12		5	8		69	69	46	46	
	1-2	829	222	50	62	108	2	5	10		75 63	75 90	50 42	50 42	
	9-3	42	42	28	28	28	1-	5	1-2		159	222	90	102	
	1-5-6 4-8-10	252 30	469	144 20	144	201	31	5	3-9		172	172	100	100	
	4-10-3	45	45	30	30	30	1	5	5-6 7-2-1		120	93 120	33 44	207 180	
	5-6-7	151	256	83	129	159	6	5	7-5-6		108	114	42	174	
	7-2-1 4-8-10-9-3	211 63	329 63	116 42	180 42	231 42	8	5	1-2-5-		334	481	190	202	- 1
	1	25	25	11	39	39	2	5	10-8-5		96 114	123	64 76	64 76	
	2	14	14	7	21	21	1		10-4-5				70	70	
	3	133 126	133 245	76 72	76 72	57 105	117								
	3	26	26	13	39	39	2	Warehouse	Hospital	Seattle fault			Cascadia fault		
	7	32 42	50 60	16 21	48 63	75 90	4			w	R	N	w	R	
	8	133	245 245	76 80	76 80	105	15	1	3	4969	3732	6466	5922	504	
	10	140	245 245	68	68	105	1		4		3454	4254	5422	391	7
	2-1	28	28	14	42	42	2		8	1874 5723	4617 3686	4213 1773	1872 6784	403	6
	5-6 10-4	38 128	38 254	19 74	57 74	57 111	3 2		9-3		3000	1773	07.04		
	7-6-5	128	138	74 51	74 153	207	100		4-8-10	1532-5468-0					7-3803-0
	2-1-10-4	238	448	134	162	222	3	2	Total	19,566 6313	15,489 6042	16,706 6485	20,000 7000	20,0 526	
	4-9-8-10 2-1-3-9-8-4-10	153 533	272 943	90 282	90 406	123 577	15		1	0313	0042	0403	2234	526	
	2-1-3-9-8-4-10 2-1-10-4-8-9-3	533	943	282	406	577	15		2	3409	3857		5296		
	1	98	245	56	56	105	1.		3					100	
	3	112	175 245	64	64	75 105	11		3 5				6706		
	4	98	245	56	56	105	1		2-1			3994-3006			8-3042
	5	14	14	7	21	21	1-		Total	9722	9899	13,485	21,236	12,5	364
	6	8 24	8 24	12	12 36	12 36	2	3	5			4836		356	4
	8	45	105	30	30	70	1		6			2913			
	9	51	105	34 10	34	70 10	1		7	7000 3021	5932	3869	7000 5410	683	0
	10 2-1	15 126	15 189	10 71	10 85	10 96	-		7	3021			5410 6310		
	6-5	18	18	9	27	27	1		10	5214	3498	2189		300	
	10-4	24	24 380	16 90	16 246	16 420			6-5	3129-2293	2508-3487		3801-479	181	4-5186
	3-1-2 6-5-7	216 46	380 46	90 23	246	420 69	12		6-5-7 4-9-8-10				0-0-952-6041		
	7-1-2	88	108	44	132	162	8		Total	20,657	15,425	13,807	30,000	20,4	100
	2-1-3-9 4-9-8-10	309 125	474 272	155 74	265 74	361 123	11 -								
	1	125	272	74 12	74 36	123 36	23 24								
	2	34	50	17	51	75	34								
	3	119	119	68 68	68	51 51	17								
	4	119 34	119 34	68 17	68 51	51 51	17								
	6	30	50	15	45	75	30								
	7	40 54	70 90	20 36	60 36	105	40 18								
	8	54 57	90 105	36 38	36 38	60 70	18								
	10	51	51	34	34	34	17								
	1-2	36	36	18	54	54	36								
	3-9 5-6	137 46	137	80 23	80 69	63 69	23 46								
	7-6	90	134	46	135	204	90								
	7-6-5 1-2-5-6	100 211	148 295	50	150	222	100								
	4-9-8-10	146	146	118 86	154 86	165	61 26			→ < 6			· 3) Q (

More tables

10

5214

and amou	nts of ho	ospitals						
Hospital	Seattle	fault		Cascadia fault				
	$\overline{ m W}$	R	N	$\overline{\mathrm{W}}$	R	N		
1	6313	6042	9491	9234	8306	13,624		
2	3409	3857	3994	5296	3958	7149		
3	4969	3732	6466	5922	5147	9357		
4	1532	3454	4254	5422	7114	7507		
5	2293	3487	4836	7185	8750	10,258		
6	3129	2508	2913	3801	1814	2112		
7	10,021	5932	3869	12,410	6830	7639		
8	7342	4617	4213	9134	3803	5924		
9	5723	3686	1773	6784	4036	4382		

3498 2189 6048

3861

3006

Last table

Path type		ttle	fault	Cascadia fault			
	W	R	N	W	R	N	
Paths through I-5	7	7	4	4	3	1	
Paths through small bridges	4	3	1	7	7	4	
North paths	2	2	1	3	3	2	
South paths	3	3	2	2	2	1	

Concluding remarks

Practical implementations

- ▶ Applicable to a variety disaster scenarios in other cities
- ► Claims up to 10 medical supply types can be solved in a reasonable time during disaster
- ▶ Used in planners and first responder training, such as the simulation and visualization environment RimSim developed for Seattle

Required information

- ► Availability of medical supplies
- ► Warehouse locations
- ▶ Pre-disaster capacities and operating costs
- ► Frequently used routes and alternative routes according to infrastructure damage